ENGINEERING INTERVENTIONS FOR HIGHER & SUSTAINABLE AGRICULTURAL GROWTH IN INDIA

Dr. Nawab Ali Deputy Director General (Engg.) Indian Council of Agricultural Research New Delhi – 110 012

- Introduction
- Agriculture Scenario
- Mechanization of Agriculture
- Processing and Value Addition
- Energy Management
- •Sustainable Agriculture
- Recommendations

INTRODUCTION

- Life is energy
- Energy comes from food
- Food comes from agriculture
- Agriculture depends on solar energy
- Solar Energy is natural & renewable

Energy is capacity for activity

(Physiological and Mechanical)

Survival, convenience and comfort of human beings depend on how best the Solar Energy is captured, transformed and utilized.

Agricultural plays VVI Role in human survival, health and happiness.

INTRODUCTION - 1

Food
Water
Air

1025 Million Indian people (17% of world population with 2.4% land)

Agriculture	Raw Food Materials	
↓	Plant based : 650 Mt	
Food	Animal based : 100 Mt	

- GOI is committed for HHF&NS through enhanced agricultural productivity, diversity and value addition, on sustainable basis.
- ICAR/NARS is MANDATED FOR THIS.

Agricultural Scenario in India

Geographical Area and Agricultural Land		
 Total geographical area 	328.7 Mha	
 Net cropped area 	142.8 Mha	
 Grossed cropped area 	190.0 Mha	
 Net area under irrigation 	55.0 Mha	
 Land distribution pattern 		
• Large,> 10ha (17ha)	15%	
•Medium 4-10 ha (6ha)	25%	
 Semi-medium 2-4 ha (2.7ha) 	24%	
•Small, 1-2 ha(1.4ha)	19%	
Marginal > 1ha(0.4ha)	17%	

Operation in Production and Post-Production Agriculture

Plant Based		
(Food & Fibre)		
PRODUCTION TECHNOLOGY (PT)		
 Land Levelling Seed bed Preparation Sowing and Planting Irrigation and Fertilization Weed Control and Plant Protection Harvesting and threshing 	 Cleaning and grading Handling and transport Drying and storage Processing and value addition Packaging, transport and marketing Proparation for utilization 	

AUGMENTATION OF FOOD PRODUCTION IN INDIA THROUGH ENGINEERING INTERVENTIONS

Activity/Intervention	Augmentation of total food production, %
•Farm Mechanization	10-15%
Post-Harvest Management	5-10%
•Value Addition	25-400% (value)

Contribution of Agricultural Mechanization in India

Saving in seed	15-20%	
 Saving in fertilizer 	15-20%	
 Saving in time 	20-30%	
 Reduction in labours 	20-30%	
 Increase in cropping intensity 	5-20%	
•Higher productivity 10-15%		
 Reduction in drudgery of farm workers especially 		
that of women		

ENERGY SOURCES AND FARM POWER

Energy Sources	Farm Power
 Conventional or commercial (coal, water, petroleum, gas & electricity) 	 Animate (human and animal)
 Non-conventional or Renewable (solar, wind, biomass and animate) 	 Mechanical (Tractor, power tiller, diesel & electricity)
	 Renewable (Solar, biogas, produce gas)

High and rising cost of depleting petroleum and irregular supply of electricity in rural sector compel the development and promotion of RES based gadgets and power supply for better rural living.

Percent contribution of different power sources in Indian Agriculture (2005-06)

•Agricultural worker	6	
•Draught animals	8	
•Tractor	47	Total power =
•Power tiller	01	1.5 kW./ha
•Diesel engine	18	
•Electric motors	20	

Present population and annual production of some of the farm implements and machines

Implements/machines	Annual sales	Population in 2004-05, Million
Tractor	175,000	3.00
Power tiller	10000	0.130
Combines	600	0.006
Irrigation and diesel pumps	700,000	32.00
Power sprayer/duster	450,000	0.150
Seed drills	250,000	1.700
Threshers	400,000	2.500

model need to be set up in production catchments to establish the benefits of mechanization of farm operations and post-harvest for increasing production and productivity and employment generation. The employment generation will be through increasing cropping intensity and creation of secondary business of agro-processing, value addition and marketing at rural level.

Mechanization Package for Agriculture

Use of appropriate implements & machinery would result in:

•15-20% Seed saving

•15-20% Fertilizer saving

•5-20% Increase in C. I.

•10-15% higher productivity

Mould Board Plough

Cost: Rs.15,000-16,000 Capacity: 0.2 ha/hour Cost of Operation: Rs.1050/ha

Cost: Rs.4500 Capacity: .18-0.24 ha/hour Operation: Rs.165/ha

•Region and crop-wise mechanization package consisting of animal drawn and tractor operated implements and equipment have been developed.

Inclined Plate Planter

Cost: Rs.16,000 Capacity: 0.40-0.50 ha/hour Cost of Operation:Rs.740/ha

Resource Conservation Equipment & Technology		
Laser land leveler	•30-50% saving in water	
Rotavator	 •50% fuel saving & better quality seed bed 	
•Zero till drill/minimum till drill/ multipurpose tool bar/ raised bed planter	•5-10% increase in yield and saving of Rs. 2000- 3000/ha.	
 Pressurized irrigation 	•20-30% saving in water	
 Rotary power weeder 	•20-30% saving in time and labour	
•Vertical conveyor reaper/ combine	 Timely harvesting, more yield 	
 Multi-crop thresher 	•50% saving in labour and time and 54% saving in cost of threshing	
Straw combine	•Recovers 50% straw and also 70-100 kg grain/ha resulting into an average saving of Rs. 1250/ha.	
•Straw baler	 Makes bales and checks environmental pollution 	
 Straw cutter-cum-spreader 	•Cuts and spreads the straw evenly and helps in sowing by zero till drill.	
 Improved manual harvester for mango & kinnow 	 No damage to fruit and higher capacity 	

Laser Land Leveler

•30-50% saving in water and 5-10% higher yield
•Cost is about Rs. 400,000 – 500,000. Getting popular among small and medium farmers on custom-hire basis

Zero Till Drill

Saves Rs. 2000-3000/ha on account of time and fuel

Zero till drill

Benefits

- 50 to 65% saving in time in land preparation and sowing.
- 40-65% reduction in cost of operation
- Saves Rs. 2000-3000/ha.
- Yield increase by 5%
- Saving in fuel by 30 %

Potential

- •Total wheat area =26 Mha
- If only 11Mha is sown by zero till drill, total expected saving is Rs.2200-3300 crore (US\$ 550 - 825 million)
- •Average Field capacity is 3 ha/day (sowing time=20 days)
- •Number of drills needed=180,000
- •Funds needed = Rs. 360 crores

(US\$ 90 million)

- •Saving in cost of production =Rs.2200 crores (US\$ 550 million)
- Increase in wheat production= 2 Mt.

Manual Rice Transplanting

Self propelled 6-row Rice Transplanting

Sprinkler Irrigation

Drip Irrigation

Manual Weeder

Power Weeder

Power Sprayer

Manual Harvesting

SELF PROPELLED VERTICAL CONVEYOR REAPER

Combine Harvesting

PROCESSING AND VALUE ADDITION

AT EVERY STAGE OF PROCESSING VALUE IS ADDED TO THE PRODUCT

- Processing and value addition in the Production Catchment for:
 - **Loss Reduction**
 - Income Generation
 - **Better Quality Products**
 - By-products Utilization
 - **Reduced Transportation**

Resulting in better human, animal and soil health

AGRO PROCESSING CENTRE

An investment of Rs. 100,000 can generate employment for 1-2 persons and an income of Rs. 3000-5000/month for the entrepreneur

Soybean (8-9 Mt)

Conventional Products

• Oil and Cake

Diversified Products (whole soybean based)

- Soy-based dairy analogs
- Soy fortified baked products
- Roasted and fermented soy snacks
- Soy-cereal-millets based baked/
 extruded RTE foods
- Dietary fibre from soyhull & okara

Potential Value Addition

- Fullfat Soyflour : 40%
- Soymilk : 150%
- Soypaneer: 400%

Sugarcane based diversified products for small and micro enterprises in rural sector.

Entrepreneurship Development in Soy-Dairy Analogs

Cost of 200 l/day(8h) or 50 kg soypaneer per day Plant = Rs. 270,000

Some of the Women friendly Post Harvest Tools and Machines - 1

Cost: Rs. 750=00 Capacity: 30-40kg/h Cost of Operation:Rs.25/q

Cost: Rs. 900=00 Capacity: 60-70kg/h Cost of Operation:Rs.15-20/q

Hanging type grain cleaner

Some of the Women friendly Post Harvest Tools and Machines-2

Cost: Rs.2000=00 Capacity:- 150-200 kg/h Cost of Operation:Rs.5-6/q

Cost: Rs.4000=00 Capacity:- 100kg dal/h Cost of Operation:Rs.15-20/q

Cost: Rs.22000=00 Capacity:- 80-120 kg/h Cost of Operation:Rs.15/q **Energy Management in Agriculture Status, Issues and the Strategy**

- Solar Energy and Agriculture
- Farm Power and Energy
- Energy Use in Agriculture
- Energy Issues and Recommendations

SOLAR ENERGY & AGRICULTURE

- •Solar radiation
- •Photosynthesis
- •Primary agricultural produces
- Processed agricultural products

•Food & Feed for humans & animals

Humans & animals are used as Animate Sources of power for agriculture

Percent contribution of different power sources in Indian Agriculture (2005-06)

•Agricultural worker	6	
•Draught animals	8	
•Tractor	47	Total power
•Power tiller	01	= 1.5 kW/ha
•Diesel engine	18	
•Electric motors	20	

Tractor density in some of the states of India

States	Number of tractors per 1000 ha	Remarks
Punjab	71.4	
• Haryana	60.1	
Uttar Pradesh	28.0	Tractor density in India
Tamil Nadu	12.3	Highest in Punjab: 72
• Gujarat	12.3	Lowest in Orissa : 01
Rajasthan	9.8	All India : 13
West Bengal	1.5	
• Orissa	1.3	
•All India	13	<u> </u>

Farm power availability and average productivity of Foodgrains in some of the states of India in 2000-01

Name of the State	Farm Power Availability, kW/ha	Food grain productivity, kg/ha
Punjab	3.50	4032
Haryana	2.25	3088
Uttar Pradesh	1.75	2105
Andhra Pradesh	1.60	1995
Bihar	0.80	1622
Madhya Pradesh	0.80	907
Orissa	0.60	799
Chhattisgarh	0.60	799
All India	1.35	1723

Energy Issues Involved in Agriculture-1

Source of Energy	Issues Involved
Draught Animal Power (DAP)	• Enhancement of DAP utilization efficiency through appropriate harnesses and matching equipment for different breeds
	(Draughtability, matching equipment and work rest cycle)
	• Expanding the annual use of DAP through haulage (carting) and rotary mode of operation for agro-processing and electricity generation
	(Rotary mode of operation)
	One pair DAP based optimum farm size and other annual usage for economic viability
	(DAP based optimum farm size)

Energy Issues Involved in Agriculture-2

Source of Energy	Issues involved
Renewable Energy Sources (RES)	 Crop residue based decentralized power generation (DPG) through gasification (flue gases) or anaerobic decomposition (biogas) or fermentation (fuel alcohol). Systems and gadgets need to be developed, tested and upgraded to pilot plants of appropriate sizes. Performance evaluated and management package developed. <i>(Biomass based DPG using thermal or bio-conversion route)</i> Promotion of biomass based improved cook stove, solar cooker and biogas & SPV appliances in rural sector. <i>(RES based gadgets and appliances)</i> Bio-fuel from Jatropha and Karanj for tractor and diesel pump sets. <i>(Bio-fuel/diesel)</i>

Energy Issues Involved in Agriculture-3

Source of Energy	Issues involved	
Conventional Energy Sources (Petroleum)	 Development and promotion of energy conservation technology and maximization of energy use efficiency (Energy saving technology) 	

Role of RES and GOI Programme

- •RES is inexhaustible and Environment friendly. District Advisory Committees on renewable energy have been constituted (532/605).
- Energy consumption as an Indicator for Growth & Progress
- •Electricity consumption per capita in India is 36 kWh

•RES like sun, wind, water and biomass are being used from very beginning of human life on the planet earth. It is needed to be modernized and strengthened.

Wind Mill for Water Lifting and Solar Energy for Crop Drying

Biogas run Water Pump

Solar/Sun Drying and Marketing of Agricultural Produce

Renewable Energy Technology and Gadgets for Rural Sector

For Domestic Application	For Agro-industr	rial Application
Biogas Plant	Solar Photovoltaic Pump	Improved Cookstove
Biomass Cook Stove	 Solar Tunnel Dryer 	It has higher thermal
•Solar Cooker	 Biomass gasifier 	emission as compared to traditional cook stove.
•Solar Water Heater	 Biogas slurry as manure 	7
•Solar Dryer		
Biogas Plant	Solar Cooker	Photovoltaic Pump

Thermal and Motive Energy for Agricultural Production and Processing in Rural Sector

- India produces about 500 Mt of crop residues annually
- 25% of crop residue (125 Mt) is available for energy generation (12500 MW) in rural sector
- Gasification based system/ technology costing Rs. 10-15 million/MW is available

Producer gas system installed in an industry near Anand (Gujarat) for chicory roasting

Benefits of Biofuels

- Carbon neutral
- •Renewable
- •Support rural livelihood
- •Save foreign exchange
- •Indigenous energy self-sufficiency

Major Sources of Biofuel

Biofuel	Sources	
Bioethanol	- Sweet sorghum	
	- Crop residues	
	- Sugarcane	
	- Maize	
	- Cassava	
Biodiesel	- Jatropha	
	- Pongamia	
	- Other TBOs	
	- Soybean/ rapeseed	
	- Other oils	

GHG reduction relative to gasoline

Biofuel	Feedstock	GHG
Source		reduction
Sugar	sugarcane	100 %
	sweet sorghum	
Oil	Oilpalm	41-66 %
	Soybean	
	rapeseed	
Starch	Maize	13-53 %
Cellulosic	maize and	50-100 %
	sorghum stalk	
	grasses	
	crop residues	

World Ethanol Production (2005)

Country	M litres	% share
• USA	16,200	35
• Brazil	16,000	35
• China	3,800	8
• India	1,700	4
• Others	8,500	18
World Total	46,200	100

World Biodiesel Production (2005)

Country	M litres	% share
Germany	1900	5/1
France	500	15
USA	300	9
Others	800	22
		100
World Total	3500	100

Production and Productivity Potential of Jatropa Seed & Oil

Plant population

- •(2 m x 2 m) : 2500
- •Fruiting starts : 2nd year
- •Fruiting stabilizes : 5-6 years
- •Fruiting continues: 40-50 years
- Jatropha seed
- •Oil content
- •Oil yield

- : 4-5 kg/plant
- : **30-35%**
- : 3.0-4.0 t/ha

Jatropha Plant and Fruits

Jatropha seed

Jatropha seed and kernel

Jatropha Oil & Cake

•Sustainable production, conversion and application of biofuels are in the National Interest

Biofuel Value Chain

- Trait development
- Seed production
- Feedstock production
- Bioprocessing
- Biofuel distribution
- Consumer fuels
- End users

Biofuel Policy

Replacement of fossil fuels by biofuels to the extent of

5 % by 2012

10 % by 2017

20 % beyond 2017

Researchable Issues

• To evaluate different biofuel feedstocks for energy efficiency and mitigation of GHG

• To engineer microbes for efficient biomass conversion into biofuels

• Genetic enhancement of biofuel crops for rainfed marginal or non-agricultural lands

Researchable Issues

• Development of genebanks and molecular breeding for biofuel crops having high photosynthesis and metabolism and low lignin with easy breakdown for biofuel conversion

• Development and standardization of technology for PHM, fuel processing and byproducts utilization

- Energy autonomy potential through DPG based on biomass need to be explored in terms of technology and management
- RES based gadget and appliances such as solar cooker and water heaters; SPV lightening and pumping; biogas stove and engines system need to be promoted on large scale.
- Development and promotion of energy conservation technology and maximization of energy use efficiency and the promotion of bio-fuel from Jatropha and Karanj
- Enhancement of DAP utilization efficiency through appropriate harnesses and matching equipments for different breeds and optimum farm size for economic viability of DAP need to be established
- Statistical data on use and problems of RES based gadget and appliance & biomass potential and present uses need to be collected and analyzed.

Sustainable Agriculture

- Economically viable
- •Eco friendly
- Socially acceptable
- Judicious use of Natural Resources (Soil, Water, Bio)
- Use of RES & Gadgets
- •Diversification of Agril (IIFS)
- Use of Resource Conservation Farm Tools & Equipment
- Post harvest management and processing

Sustainable Agriculture Management

- Resource Conservation Technology and Machines
- Contract, cooperative and Corporate Farming
- Agricultural Produce Markets
- •Food Security and RTF
- Strong Agril Extension System

Suggestions/Recommendations-1 •Scientific management of soil, water and bio resources.

•Development and promotion of farmers' friendly farming systems including livestock and fishery to maximize the system output.

 Crop and site specific agricultural mechanization using a proper blend of conventional and renewable energy sources.

•Adoption of integrated nutrient and pest management practices.

Suggestions/Recommendations-2

•Post-harvest management and value addition in the production catchment.

•Bridge the knowledge gap through effective extension.

Provide easy access to credit at affordable rate

HAPPY NEW YEAR 2008

Thank You