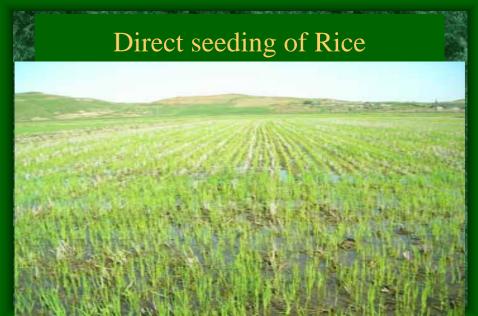
Introduction of CA Techniques in DPR Korea

International Seminar on Enhancing Extension of Conservation Agriculture Techniques in Asia and Pacific 25. October. 2007

Disadvantage of agricultural practice In DPRK.

- Continuous decrease of soil fertility


 (low humus contents and available soil nutrients,

 Severe soil loss caused by heavy rains in summer)
- Lack of agricultural materials
 (Low inputs of organic and inorganic materials comparative with target yields, fuels and etc.)
- •More time and working schedules to prepare field for double crop system.

CA experimental activities in DPRK

- Test on the CA in DPRK was started in 3 farms since 2003 with support of FAO TCP project
- We have a considerable experiences and increased our technical capacity for full adoption to our condition.
- We expanded CA practice into 22 farms under FAO rehabilitation project.

GMCC(hairy vetch) for seeding

(it can harvest 20~30t/ha.of green matter before seeding)

Keeping optimum times and dose of herb.application

Seeding at beginning of Oct.to resist severe winter cold.

Harvesting at end of May for good next crops.

Result of CA trial

- Improved soil fertility and 50-60% reduction of wind erosion and rainfall
- 10-15% increase of yield
- 15-25% of saving of production cost

Soil improvement in upland field (2003 ~2005)						
site	Cultivation	OMC	Nutrients(mg/100g)			Soil
	type	(%)	N	P2O5	K2O	Cover
	Traditional	1.5	6.5	12.5	15.7	No-cover
Song	Maize residue cover	1.8	8.7	15.7	16.8	Maize residue cover 6t/ha
Mun farm	GM-Maize	1.7	8.5	16.5	16.3	GM 5t/ha
	Traditional	1.7	7.8	15.0	13.0	No-cover

9.5

5.7

7.5

16.7

8.8

10.5

1.9

1.5

1.8

14.4

20.0

21.1

Maize residue

cover 5t/ha

No-cover

GM 7t/ha

Ryong Maize residue

cover

Traditional

GM-Maize

Chon

farm Jung

San

farm

Soil erosion decrease on sloppy land

Washing up of sloping land(m3/ha.)

plot	index			
	m3	Dif.	%	
TA	155		0	
CA	75.2	79.8	48.5	

110mm .14.5 Sukchon

Soil looses by washing up

plot	index			
	T/ha	Dif.	%	
TA	35.0	= 107	0	
CA	5.0	30.0	70.0	

Improved soil bulk density of CA plot

Soil		bulk density(g/m3)				
types	Method	Be.S	Aft.S	mid Jul.	Aft.H	
Paddy	TA	1.28	1.02	1.20	1.31	
	CA	1.26	1.08	1.21	1.30	
Non-P	TA	1.24	1.18	1.23	1.33	
	CA	1.20	1.20	1.15	1.20	

Songmun farm.Samsok. 5cmlayer 2006

Number of useful soil animals has increased

CA effectiveness to TA(rice yield. kg/ha)

g: 1	CA (Direct Seeding)	7910
Single crop (rice)	TA (Rice transplanting)	7620
Double crops (wheat;rice)	CA (No-till rice trans.)	4920
	TA (Rice transplanting)	4170

^{*} No-till rice trans.+ S.(4t/ha of wheat straw after wheat)

Yield(maize) increase in 3 project farms.

Economic benefit of CA compared with TA

CA machinery

Maize planter

Small-maize, soybean planter

Rice/wheat seeder

Animal traction planter

harvesters |

Maize harvester

Rice combine harvester

Conclusion

CA ensures sustainable production resources on the basis of natural materials recycling.

- Increase of soil preservation capacity by residue cover and rational rotation system
- Improves of soil structure by biological strata such as crop roots, earthworms, etc
- Keep and Increase of nutrients in soil thanks to the crop residue cover and *GMCC*

CA contributes to high agricultural production and economic benefits.

- Yield increase
- Save much labor, time and fuel
- Soil and environmental protection.
 - Harmonious with nature and bio- ecosystem.

