International Seminar on Enhancing Export Competitiveness of Asian Fruits

Nondestructive Quality Evaluation Technology for Fruits and Vegetables

Sang-Ha NOH and Kyu-Hong CHOI

Seoul National University, National Ins. of Agricultural Engineering Republic of KOREA

Contents

1. Introduction

2. Quality Components/Measure.

3. What is VIS/NIR Spectroscopy?

4. On-line Applications in Korea

5. Conclusions

Introduction (1)

- Many countries in Asia-Pacific region are facing with the significant changes in socio-economic conditions pertaining to agriculture.
 - Rapid industrialization and massive rural-urban migration
 Stimulate the necessity of Agricultural Mechanization
 - Liberalization of Int'l trade and increase in trade volume
 - Growing demand for high quality/safety agri. products
 Call for the advanced Postharvest Technology

Postharvest technology includes several operations;
 Pretreatment, sorting/grading, packing, storage, etc.

Introduction (2)

- Grading becomes essential for modern marketing since quality standard is strengthened and pricing is tied up to the quality
 - Fruits and vegetables have different size, color, sugar content, firmness, etc. on individual base
 - Various nondestructive techniques have been developed;
 machine vision, NIR spectroscopy, X-ray, MR/MRI, etc.
- □ Introduction of principles, applications and examples of VIS/NIR spectroscopic tech.
 - peach grading, apple grading, citrus grading system
 - watermelon sorting system

Quality ?

- Defined as the degree of excellence & acceptability
- Determined by cultivation tech., climate, soil, etc.
- Quantified by several quality components

Appearance Quality Compo.:

color, shape, sunburn, decay, scald, scars,scab, insect damage, pesticide damage, etc.

Internal Quality Compo.:

sugar, acid, maturity, firmness, freshness, bruise, internal defects, etc

Quality Components in Grade Standards of Apple by Country

Country	Quality components					
	External	Internal				
Korea	color, shape, weight, freshness, scab, sunburn, disease and insect damage, scars, pesticide damage, stem	sugar content, maturity, internal breakdown, internal browning				
Japan	color, shape, weight, scab, sunburn, disease damage, insect damage, scars, stem	maturity, internal breakdown, internal browning				
USA	color, shape, size, decay, scald, scab. Jonathan spot, insect damage, freezing injury, russeting, scars	maturity, firmness, internal breakdown, internal browning, bitter pit, water core, bruises				

Necessity of Sorting/Grading (1)

Quality characteristics of Fruit and vegetables

• Wide variation in quality of individual fruit

- Size and sugar content distributions of peach samples harvested at an orchard

Class by weight		Substandard	Small	Medium	Large	Extra large	
		Less than	180 -	210	250	More than 300g	
		180g	210	-250	-300		
Sugar	Min	5.2 ←	5.5	5.9	6.9	8.2	
Content (Brix)	Max	7.8	10.1	11.2	12.7	→ 15.7	
	Average	6.6	7.7	8.5	9.4	10.8	

Note: Chungdo Peach Experimental Station, 1999

Necessity of Sorting/Grading (2)

□ Consumers' preference in purchasing fruits in Korea

- Survey result in 1998; Sweetness(29.0%)>Freshness(27.2%)>Price(26.5%)>Safety..
- Survey result in 2003; Sweetness(47.3%)>Freshness(28.6%)>Price(15.1%)>Safety..
- Increase in number of large scale stores and packinghouses
 - Foreign discount store : $50(2001) \rightarrow 87(2004)$ Domestic hypermarket : $110(2001) \rightarrow 217(2004)$
 - Packinghouses: $11(2001) \rightarrow 99(2005)$

□ Change of the government policy

From production-oriented to market & consumer-oriented

Nondestructive Technologies

Nondestructive techniques for measurement of quality components of horticultural products

- Machine vision : size, shape, color, external defects
- NIR spectroscopy : chemical components and defects
- X-ray image and CT : inter. cavity and structure
- Sonic/Ultrasonic : inter. cavity & structure, density, firmness
- MR/MRI : chemical components, defects, and structure

VIS/NIR Spectroscopic Method ?

- Factors on reflectance and transmittance
- light intensity, fruit size, firmness, chemical components, cellular structure, etc

	Full-transmittance	Half-transmission
Applications	Thin-peel/ small-sized fruits(citrus, tomatoes, etc.), grain, milk,	Thick-peel/large-sized fruits and vegetables (apple, pear, watermelon, etc.)

Features of Transmittance mode

- Can detect internal breakdowns and measure average values of chemical components
- Needs high sensitivity detector and strong light source
- Low S/N ratio
- Leakage light should be blocked not to reach the detector

Current status of sorting technologies in Korea

Fruits Quality Factors	Apple	Pear	Peach	Persi -mmon	Manda- rine	Melon	Tomato	Korean melon	Water -melon
Weight	<u></u> 1)	0	0	0	0	0	0	0	0
Size	_ 5)	-	-	-	0	-	-	-	-
Colour	0	⊜∆²)	$\bigcirc \bigtriangleup$	X ⁴⁾	0	-	0	х	х
Sugar content	0	0	0	х	0	0	0	0	0
Acid content	_3)	\bigtriangleup		-	\bigtriangleup	-	х	-	-
Maturity	х	х	x	х	\bigtriangleup	х	\bigtriangleup	х	\bigtriangleup
Firmness	х	х	x	х	-	-	-	-	-
Freshness	х	х	x	х	х	х	х	х	х
Internal breakdown	0	0	x	х	х	х	х	0	0
Water core	0	-	-	-	-	-	-	-	-
Sponge disor.	-	0	-	-	-	-	-	-	-

C: Using at packing house
 C△: Technology is available but has not adopted at packing house
 △: Under study for improving accuracy
 x: Has not studied.
 -: Not regarded as quality factor

Peach Grading System(1)

□ Characteristics of Korean peaches

- Relatively soft intact flesh

- Large variation in sugar content among fruits
- Large difference of sugar content within each fruit
- Considerations in devel. of peach grader
 - Minimizing damages during sorting process
 → free tray system to avoid contact between fruits
 - Minimizing the location effect in sugar content → special design of reflection probe
 - High accuracy and large sorting capacity
 - \rightarrow real -time sorting
 - \rightarrow development of a robust calibration equation

Peach Grading System(3)

Design of NIR reflectance probe

- Measuring the reflectance of both sides at one time with two reflectance probes made with bifurcated fibers

Peach Grading System(4)

Development of Calibration Equation

- Samples: 790 peaches (*Hwangdo* variety)
- Sorting speed: 52 cm/s
 (3 fruits/sec)
- Wavelength range : 630~1100 nm
- Calibration model : MLR (Multiple Linear Regression)
- Calibration result

- Capacity : 7,200 peaches per hour
- Sugar content error of ±0.5 Brix
- Sorting accuracy of 91% in classifying two grades

Apple Grading System (2)

Detection of Internal Defects of Fuji Apple

Internal rot

Cross section of water-core samples

Apple Grading System (3)

□ Spectrum characteristics of Fuji Apple Samples

Mean transmitted energy spectra of the sound, water-core and internally rotted Fuji apples

Mean transmitted energy spectra of Fuji apples normalized with the lowest value near 675 nm

24

Classification of Internal Breakdowns

- Detection of the rotted sample by PD23 and the water-core by PD12
- Detection rate of the sound, the water-core and the rotted samples : 100 %, 91.4 % and 97.6%

Watermelon Sorting System(1)

Quality components

Weight, sugar content, maturity, internal defects (cavity and blood flesh)

Immature

Internal cavity

Blood flesh

Layout of the watermelon sorting system

- Manual feeding to free trays
- Sizing by CCD camera and Automatic weighing
- Acoustic device for sound analysis
- Optical device for NIR half-transmittance measurement

Acoustic Device for Sound Analysis

Prototype and performance test

- Capacity : 1,500 watermelons per hour
- Sugar content error: ±0.8 Brix
- Accuracy of Internal defects : 90 %

Conclusions and Remarks(1)

- With practical application of NIR spectroscopic method in1989, many changes have been occurred in marketing and production of fresh products.
- (1) Consumers' choice in purchasing fruits is turned from appearance qualities to the internal,
- (2) Quality guarantee system is being more strengthened in domestic market and international trade,
- (3) Marginal value of better quality products is increased,
- (4) Production and post-harvest technologies of fruits and vegetable are being advanced rapidly.

Conclusions and Remarks(2)

□ In the near future, Computer can tell the taste of fresh products on sorting line.

Thank you very much for your attention!

noh@snu.ac.kr

