

Indian Agriculture

- Agriculture 1.0 manual labour with traditional tools (around 1900)
- Agriculture 2.0 manual, animal, power tiller and tractor operated tools, implements and machinery - helped farmers to produce more with less effort (1920 - 2010)
- Agriculture 3.0 precision agriculture (PA) with "5R" (2010 2015)
- Agriculture 4.0 Digital farming or Smart farming (2016 2025)
 - Internet of Things: Collecting information
 - Big Data: Analysis of massive data
 - Robotics and Artificial Intelligence (AI)

Trend in Farm Mechanization in India

Cost effective solutions that drive down input costs and minimize cost of ownership but more importantly reduce drudgery of workers.

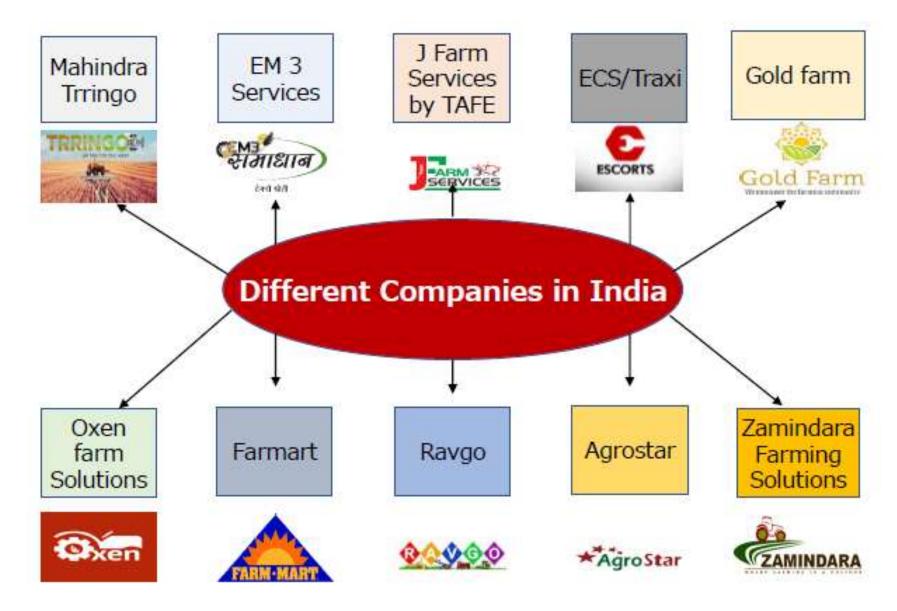
- > Drive down cost of ownership and reduce downtime
 - Custom hiring or contract farming
 - After sale service and support
 - Logistic management tools
- > Smart farm mechanization
 - Gender neutral farm implements and machinery
 - Whole tractor/system efficiency improvement
 - Supervised autonomy push a button and it works
 - Full autonomy long term

Mechanization 4.0

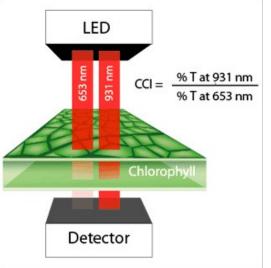
AgriTech themes are based on

- Farming as a service (FAAS) app based farmer to farmer aggregation platform
- Big data collection of data to help farmers take smart decisions
- IoT GPS, sensors, automated hardware, robotics etc.
- AI weeding, spraying and harvesting can be AI enabled – accuracy and higher productivity

Smart Farming Techniques


- Data collection or field mapping (sensor technology, GPS and GIS)
- Data saving (cloud-based, shareable for wider area analytics)
- Tracking and monitoring (technique might require cameras, drones, tags, etc.)
- Predictive analytics (Analytic software)
- Warehousing (solar-powered refrigerators)
- Labor work (automation, drones, and robotics are helpful)
- Energy saving (smart system to cut down energy consumption)

OEM & Startup Companies in Rental/CHC Business



Crop Health Monitoring

SPAD meter (2 licensee)

Hand-held device for disease identification

Ultrasonic sensor based sprayer

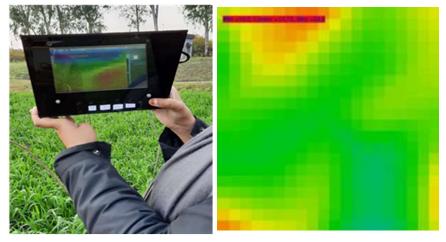
Seeding, Planting and Fertilizer Applications

Ground speed sensor based seed cum fertilizer drill

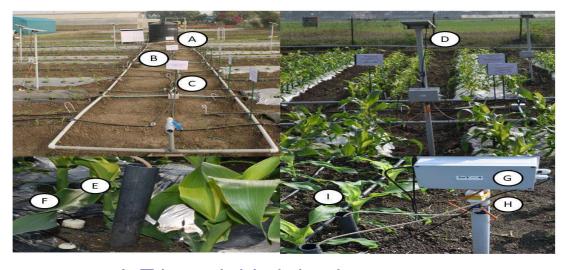
GPS based variable rate fertilizer applicator

Palletized rice seeder

Robotic vegetable transplanter



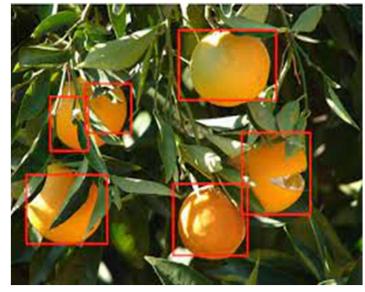
Enhanced Water Use Efficiency


Automatic irrigation system for rice

Water stress indices using thermal imaging

Controlled level puddling (one licensee)

IoT based drip irrigation system


Harvesting

Yield mapping and monitoring

Yield estimation using DL

Robotic harvesting of apples

Remote Control Machinery/Power Units

Remote control power tiller

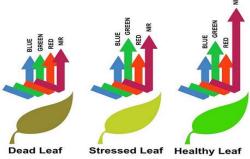
Real time monitoring system

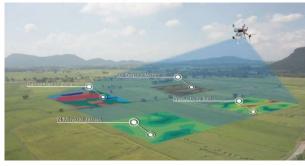
Unmanned rice transplanter

Autonomous tractor

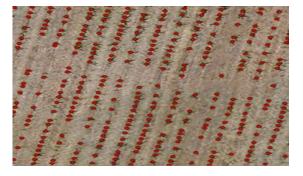
Automation in Post-harvest Agriculture

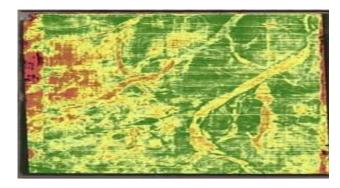
Automated packing line for horticultural produces

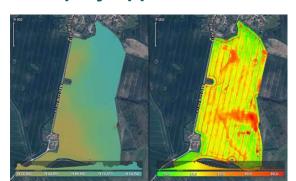

Radiography set up


Sensor for food-grains storage monitoring

Drones in Agriculture

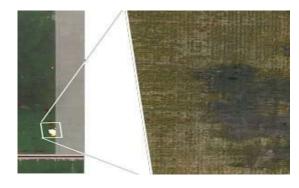





Crop Health Scouting/Monitoring

Monitoring Field Conditions

Spray Application



Crop Counting

Crop Yield Potential

Irrigation Monitoring and Planning

Leak Detection

Security

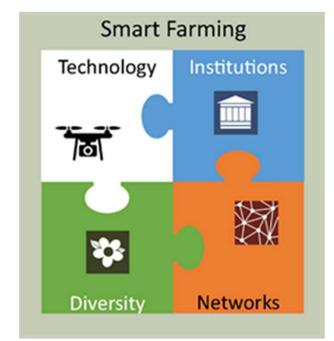
Drone Pollination

https://www.croptracker.com/blog/drone-technology-in-agriculture.html

Benefits of Smart Agriculture

- Improve machinery: high-quality and energy efficient machinery
- Precise data: predictions or actions based on accurate data
- Environmental friendly: minimize pesticide use, enhance water use efficiency, manage waste efficiency
- Efficient management and cost-effective: management costs can be reduced or allocated to maintain the technology
- Low risk: predict any disaster that might happen to the farm whether it is viral diseases or climate change

Lessons Learned and Recommendations


- Numerous opportunities for adoption of Smart farm machinery are for:
 - increasing productivity
 - reducing cost of production
 - improving inputs application and utilization efficiencies and
 - reducing environmental pollution and soil degradation.
- Farmers are not presently equipped to adopt smart agriculture technologies need support from Government and private sector at initial stage.

Lessons Learned and Recommendations

- Need to be selective in adoption of precision farming in India
- Reliability of equipment/technology and effective coordination - Vital
- In future, agriculture will be dominated by precision and cloud data with cost effective technologies like smart tractors, unmanned aerial vehicles and wireless technology.

E-mail: <u>cr.mehta@icar.gov.in</u> <u>http://ciae.icar.gov.in</u>

http://aicrp.icar.gov.in/fim/